निम्नलिखित को सिद्ध कीजिए
$\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$
$L.H.S.$ $=\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x$
$=\cot x \cot 2 x-\cot 3 x(\cot 2 x+\cot x)$
$=\cot x \cot 2 x-\cot (2 x+x)(\cot 2 x+\cot x)$
$=\cot x \cot 2 x-\left[\frac{\cot 2 x \cot x-1}{\cot x+\cot 2 x}\right](\cot 2 x+\cot x)$
$\left[\because \cot (A+B)=\frac{\cot A \cot B-1}{\cot A+\cot B}\right]$
$=\cot x \cot 2 x-(\cot 2 x \cot x-1)=1=R .H .S.$
यदि $\tan A = \frac{1}{2},\tan B = \frac{1}{3},$ तब $\cos 2A = $
यदि $A + B + C = {180^o},$ तब $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2}$ का मान होगा
$\frac{{\sin 3A - \cos \left( {\frac{\pi }{2} - A} \right)}}{{\cos A + \cos (\pi + 3A)}} = $
निम्नलिखित को सिद्ध कीजिए
$\tan 4 x=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}$
यदि $k = \sin \frac{\pi }{{18}}\,.\,\sin \frac{{5\pi }}{{18}}\,.\,\sin \frac{{7\pi }}{{18}},$ तो $k$ का आंकिक मान है