निम्नलिखित को सिद्ध कीजिए

$\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that

$\sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right), \cos ^{2} A-\sin ^{2} A=\cos 2 A$

$\therefore$ $L.H.S.$ $=\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}$

$=\frac{2 \cos \left(\frac{x+3 x}{2}\right) \sin \left(\frac{x-3 x}{2}\right)}{-\cos 2 x}$

$=\frac{2 \cos 2 x \sin (-x)}{-\cos 2 x}$

$=-2 \times(-\sin x)$

$=2 \sin x= R . H.S.$

Similar Questions

यदि $A + B + C = {180^o},$ तब  $\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C - 1}} = $

निम्नलिखित को सिद्ध कीजिए

$\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$

यदि ${\rm{cosec}}\theta = \frac{{p + q}}{{p - q}},$  तब $\cot \,\left( {\frac{\pi }{4} + \frac{\theta }{2}} \right) = $

$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $

  • [IIT 1974]

${\sin ^4}\frac{\pi }{4} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $