निम्नलिखित को सिद्ध कीजिए
$\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$
It is known that
$\sin A-\sin B=2 \cos \left(\frac{A+B}{2}\right) \sin \left(\frac{A-B}{2}\right), \cos ^{2} A-\sin ^{2} A=\cos 2 A$
$\therefore$ $L.H.S.$ $=\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}$
$=\frac{2 \cos \left(\frac{x+3 x}{2}\right) \sin \left(\frac{x-3 x}{2}\right)}{-\cos 2 x}$
$=\frac{2 \cos 2 x \sin (-x)}{-\cos 2 x}$
$=-2 \times(-\sin x)$
$=2 \sin x= R . H.S.$
यदि $A + B + C = {180^o},$ तब $\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C - 1}} = $
निम्नलिखित को सिद्ध कीजिए
$\sin ^{2} 6 x-\sin ^{2} 4 x=\sin 2 x \sin 10 x$
यदि ${\rm{cosec}}\theta = \frac{{p + q}}{{p - q}},$ तब $\cot \,\left( {\frac{\pi }{4} + \frac{\theta }{2}} \right) = $
$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $
${\sin ^4}\frac{\pi }{4} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $