If $A + B + C = \pi ,$ then $\frac{{\cos A}}{{\sin B\sin C}} + \frac{{\cos B}}{{\sin C\sin A}} + \frac{{\cos C}}{{\sin A\sin B}} = $
$0$
$1$
$2$
$3$
If $\tan \frac{\theta }{2} = t,$then $\frac{{1 - {t^2}}}{{1 + {t^2}}}$is equal to
$\frac{{\sin \theta + \sin 2\theta }}{{1 + \cos \theta + \cos 2\theta }} = $
$\sin 12^\circ \sin 48^\circ \sin 54^\circ = $
The value of $\frac{{\tan {{70}^o} - \tan {{20}^o}}}{{\tan {{50}^o}}} = $
If $A + B + C = {180^o},$ then $\frac{{\sin 2A + \sin 2B + \sin 2C}}{{\cos A + \cos B + \cos C - 1}} = $