If $(\sec A + \tan A)\,(\sec B + \tan B)\,(\sec C + \tan C)$ $ = \,(\sec A - \tan A)\,(\sec B - \tan B)\,(\sec C - \tan C),$ then each side is equal to

  • A

    $1$

  • B

    $-1$

  • C

    $0$

  • D

    $a$ or $b$ both

Similar Questions

If ${\cos ^6}\alpha + {\sin ^6}\alpha + K\,{\sin ^2}2\alpha = 1,$ then $K =$

$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $

The value of $\frac{1}{4} \,\,tan \frac{\pi}{8} +\frac{1}{8} \,\,tan \frac{\pi}{16}+\frac{1}{16} \,\,tan \frac{\pi}{32}+.\,.\,.\,\infty  $ terms is equal to-

If $\alpha + \beta - \gamma = \pi ,$ then ${\sin ^2}\alpha + {\sin ^2}\beta - {\sin ^2}\gamma = $

  • [IIT 1980]

If $\cos \,(\theta - \alpha ) = a,\,\,\sin \,(\theta - \beta ) = b,\,\,$then ${\cos ^2}(\alpha - \beta ) + 2ab\,\sin \,(\alpha - \beta )$ is equal to