If $(\sec A + \tan A)\,(\sec B + \tan B)\,(\sec C + \tan C)$ $ = \,(\sec A - \tan A)\,(\sec B - \tan B)\,(\sec C - \tan C),$ then each side is equal to
$1$
$-1$
$0$
$a$ or $b$ both
If $x + y = 3 - cos4\theta$ and $x - y = 4 \,sin2\theta$ then
If $\sin \alpha = \frac{{336}}{{625}}$ and $450^\circ < \alpha < 540^\circ ,$ then $\sin \left( {\frac{\alpha }{4}} \right) = $
The value of ,$\sqrt 3 \, cosec\, 20^o - sec\, 20^o $ is :
If $\alpha + \beta + \gamma = 2\pi ,$ then
The value of $\tan 9^{\circ}-\tan 27^{\circ}-\tan 63^{\circ}+\tan 81^{\circ}$ is $............$.