यदि $A + B + C = \pi ,$ तो ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ हमेशा है
$ \le 1$
$ \ge 1$
$= 0$
$= 1$
यदि $\tan x + \tan \left( {\frac{\pi }{3} + x} \right) + \tan \left( {\frac{{2\pi }}{3} + x} \right) = 3,$ हो, तब
$1 - 2{\sin ^2}\left( {\frac{\pi }{4} + \theta } \right) = $
$\frac{{\cos A}}{{1 - \sin A}} = $
निम्नलिखित को सिद्ध कीजिए
$\tan 4 x=\frac{4 \tan x\left(1-\tan ^{2} x\right)}{1-6 \tan ^{2} x+\tan ^{4} x}$
यदि $\tan \,(A + B) = p,\,\,\tan \,(A - B) = q,$ तो $\tan \,2A$ का मान $p$ तथा $q$ के पदों में है