3.Trigonometrical Ratios, Functions and Identities
medium

यदि $A + B + C = \pi ,$ तो ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ हमेशा है

A

$ \le 1$

B

$ \ge 1$

C

$= 0$

D

$= 1$

Solution

(b) $\tan \left( {\frac{A}{2} + \frac{B}{2} + \frac{C}{2}} \right) $

$= \frac{{{S_1} – {S_3}}}{{1 – {S_2}}} = \tan \frac{\pi }{2} = \infty $ 

$\therefore {S_2} = 1$ or $xy + yz + zx = 1$, 

यहाँ  $x = \tan \frac{A}{2}$ इत्यादि. 

अब ${(x – y)^2} + {(y – z)^2} + {(z – x)^2} \ge 0$

या $2\sum {x^2} – 2\sum xy \ge 0 \Rightarrow \sum {x^2} \ge 1$.   $\{ \because \sum xy = 1\} $

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.