माना $\alpha ,\beta $ इस प्रकार है कि $\pi < (\alpha - \beta ) < 3\pi $. यदि $\sin \alpha + \sin \beta = - \frac{{21}}{{65}}$ तथा $\cos \alpha + \cos \beta = - \frac{{27}}{{65}},$ तो $\cos \frac{{\alpha - \beta }}{2}$ का मान है
$\frac{{ - 6}}{{65}}$
$\frac{3}{{\sqrt {130} }}$
$\frac{6}{{65}}$
$ - \frac{3}{{\sqrt {130} }}$
$\left( {\frac{{\sin 2A}}{{1 + \cos 2A}}} \right)\,\left( {\frac{{\cos A}}{{1 + \cos A}}} \right)= $
व्यंजक $\frac{{\cos 6x + 6\cos 4x + 15\cos 2x + 10}}{{\cos 5x + 5\cos 3x + 10\cos x}}$ बराबर है
${\sin ^4}\frac{\pi }{4} + {\sin ^4}\frac{{3\pi }}{8} + {\sin ^4}\frac{{5\pi }}{8} + {\sin ^4}\frac{{7\pi }}{8} = $
$\frac{{\cos 12^\circ - \sin 12^\circ }}{{\cos 12^\circ + \sin 12^\circ }} + \frac{{\sin 147^\circ }}{{\cos 147^\circ }} = $
$\cos 20^\circ \cos 40^\circ \cos 80^\circ = $