3.Trigonometrical Ratios, Functions and Identities
easy

If $A + B + C = {270^o},$ then $\cos \,2A + \cos 2B + \cos 2C + 4\sin A\,\sin B\,\sin C = $

A

$0$

B

$1$

C

$2$

D

$3$

Solution

(b) $A + B + C = {270^o}\,\,\, \Rightarrow A = B = C = {90^o},$ then 

$\cos 2A + \cos 2B + \cos 2C + 4\sin A\,\sin B\,\sin C$

$ = \cos {180^o} + \cos {180^o} + \cos {180^o} + 4\sin {90^o}\sin {90^o}\sin {90^o}$

$ = – 1 – 1 – 1 + 4 \cdot 1\cdot 1\cdot 1 = – 3 + 4 = 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.