If $A + B + C = {270^o},$ then $\cos \,2A + \cos 2B + \cos 2C + 4\sin A\,\sin B\,\sin C = $

  • A

    $0$

  • B

    $1$

  • C

    $2$

  • D

    $3$

Similar Questions

$\frac{{\sec \,8\theta  - 1}}{{\sec \,4\theta  - 1}}$ is equal to

${\rm{cosec }}A - 2\cot 2A\cos A = $

Let $\frac{\pi}{2} < x < \pi$ be such that $\cot x=\frac{-5}{\sqrt{11}}$. Then $\left(\sin \frac{11 x}{2}\right)(\sin 6 x-\cos 6 x)+\left(\cos \frac{11 x}{2}\right)(\sin 6 x+\cos 6 x)$ is equal to

  • [IIT 2024]

If $\cos A = \cos B\,\,\cos C$and $A + B + C = \pi ,$ then the value of $\cot \,B\,\cot \,C$ is

The value of $\sin 600^\circ \cos 330^\circ + \cos 120^\circ \sin 150^\circ $ is