यदि $A + B + C = {270^o},$ तब $\cos \,2A + \cos 2B + \cos 2C + 4\sin A\,\sin B\,\sin C = $
$0$
$1$
$2$
$3$
$\frac{1}{{\tan 3A - \tan A}} - \frac{1}{{\cot 3A - \cot A}} = $
यदि $\frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}$ तथा $\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}, \alpha$, $\beta \in\left(0, \frac{\pi}{2}\right)$, हैं, तो $\tan (\alpha+2 \beta)$ बराबर ........ है |
$\frac{{\cos A}}{{1 - \sin A}} = $
यदि $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, तो $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ का मान होगा
व्यंजक $\frac{{\cos 6x + 6\cos 4x + 15\cos 2x + 10}}{{\cos 5x + 5\cos 3x + 10\cos x}}$ बराबर है