If $\sin A + \cos A = \sqrt 2 ,$ then ${\cos ^2}A = $
$\frac{1}{4}$
$\frac{1}{2}$
$\frac{1}{{\sqrt 2 }}$
$\frac{3}{2}$
Number of values of $ x \in \left[ {0,2\pi } \right]$ satisfying the equation $cotx - cosx = 1 - cotx. cosx$
If $A, B, C$ are angles of a triangle, then $\sin 2A + \sin 2B - \sin 2C$ is equal to
Prove that: $\cos 4 x=1-8 \sin ^{2} x \cos ^{2} x$
The exact value of $cos^273^o + cos^247^o + (cos73^o . cos47^o )$ is
If $\frac{\sqrt{2} \sin \alpha}{\sqrt{1+\cos 2 \alpha}}=\frac{1}{7}$ and $\sqrt{\frac{1-\cos 2 \beta}{2}}=\frac{1}{\sqrt{10}}$ $\alpha, \beta \in\left(0, \frac{\pi}{2}\right),$ then $\tan (\alpha+2 \beta)$ is equal to