3.Trigonometrical Ratios, Functions and Identities
medium

यदि $A + B + C = \pi \,(A,B,C > 0)$ तथा $C$ अधिककोण है, तब

A

$\tan A\,\tan B > 1$

B

$\tan A\,\tan B < 1$

C

$\tan A\,\,\tan B = 1$

D

इनमें से कोई नहीं

Solution

$A + B + C = \pi  \Rightarrow A + B = \pi  – C$

$ \Rightarrow \tan (A + B) = \tan (\pi  – C)$

$ \Rightarrow \frac{{\tan A + \tan B}}{{1 – \tan A\tan C}} = \tan (\pi  – C)$

$ \Rightarrow \frac{{\tan A + \tan B}}{{1 – \tan A\tan B}} =  – \tan C$

अब चूँकि  $C$ एक अधिक कोण है। अत:

$ \Rightarrow \tan C < 0 \Rightarrow  – \tan C > 0$

$ \Rightarrow \frac{{\tan A + \tan B}}{{1 – \tan A\tan B}} > 0 $

$\Rightarrow 1 – \tan A\tan B > 0$

$( \because A,B$ न्यून कोण हैं अत: $\therefore \tan A > 0,\tan B > 0)$

$ \Rightarrow \tan A\tan B < 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.