$\frac{{\sin 3A - \cos \left( {\frac{\pi }{2} - A} \right)}}{{\cos A + \cos (\pi + 3A)}} = $
$\tan A$
$\cot A$
$\tan 2A$
$\cot 2A$
If $A + B + C = \pi ,$ then ${\tan ^2}\frac{A}{2} + {\tan ^2}\frac{B}{2} + $${\tan ^2}\frac{C}{2}$ is always
If ${\rm{cosec}}\theta = \frac{{p + q}}{{p - q}},$ then $\cot \,\left( {\frac{\pi }{4} + \frac{\theta }{2}} \right) = $
The value of $\frac{{3 + \cot {{76}^o}\cot {{16}^o}}}{{\cot {{76}^o} + \cot {{16}^o}}}$
If $\cos A = \frac{3}{4}$, then $32\sin \frac{A}{2}\cos \frac{5}{2}A = $
$\sqrt 3 \,{\rm{cosec}}\,{20^o} - \sec \,{20^o} = $