3.Trigonometrical Ratios, Functions and Identities
medium

જો $A + B + C = \pi \,(A,B,C > 0)$ અને ખૂણો $C$ એ ગુરુકોણ હોય તો

A

$\tan A\,\tan B > 1$

B

$\tan A\,\tan B < 1$

C

$\tan A\,\,\tan B = 1$

D

એકપણ નહિ.

Solution

(b) $A + B + C = \pi \Rightarrow A + B = \pi – C$

$ \Rightarrow \tan (A + B) = \tan (\pi – C)$

$ \Rightarrow \frac{{\tan A + \tan B}}{{1 – \tan A\tan C}} = \tan (\pi – C)$

$ \Rightarrow \frac{{\tan A + \tan B}}{{1 – \tan A\tan B}} = – \tan C$

Now $C$ is an obtuse angle, hence

$ \Rightarrow \tan C < 0 \Rightarrow – \tan C > 0$

$ \Rightarrow \frac{{\tan A + \tan B}}{{1 – \tan A\tan B}} > 0$

$\Rightarrow 1 – \tan A\tan B > 0$

$(\because A,B$ are acute angles; $\therefore \tan A > 0,\tan B > 0 )$

$ \Rightarrow \tan A\tan B < 1$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.