- Home
- Standard 11
- Mathematics
3.Trigonometrical Ratios, Functions and Identities
medium
જો $A + B + C = \pi \,(A,B,C > 0)$ અને ખૂણો $C$ એ ગુરુકોણ હોય તો
A
$\tan A\,\tan B > 1$
B
$\tan A\,\tan B < 1$
C
$\tan A\,\,\tan B = 1$
D
એકપણ નહિ.
Solution
(b) $A + B + C = \pi \Rightarrow A + B = \pi – C$
$ \Rightarrow \tan (A + B) = \tan (\pi – C)$
$ \Rightarrow \frac{{\tan A + \tan B}}{{1 – \tan A\tan C}} = \tan (\pi – C)$
$ \Rightarrow \frac{{\tan A + \tan B}}{{1 – \tan A\tan B}} = – \tan C$
Now $C$ is an obtuse angle, hence
$ \Rightarrow \tan C < 0 \Rightarrow – \tan C > 0$
$ \Rightarrow \frac{{\tan A + \tan B}}{{1 – \tan A\tan B}} > 0$
$\Rightarrow 1 – \tan A\tan B > 0$
$(\because A,B$ are acute angles; $\therefore \tan A > 0,\tan B > 0 )$
$ \Rightarrow \tan A\tan B < 1$.
Standard 11
Mathematics