If $\tan \theta = \frac{{\sin \alpha - \cos \alpha }}{{\sin \alpha + \cos \alpha }},$ then $\sin \alpha + \cos \alpha $ and $\sin \alpha - \cos \alpha $ must be equal to
$\sqrt 2 \cos \theta ,\,\,\sqrt 2 \sin \theta $
$\sqrt 2 \sin \theta ,\,\,\sqrt 2 \cos \theta $
$\sqrt 2 \sin \theta ,\,\,\sqrt 2 \sin \theta $
$\sqrt 2 \,\cos \theta ,\,\,\sqrt 2 \,\cos \theta $
If $\frac{x}{{\cos \theta }} = \frac{y}{{\cos \left( {\theta - \frac{{2\pi }}{3}} \right)}} = \frac{z}{{\cos \left( {\theta + \frac{{2\pi }}{3}} \right)}},$ then $x + y + z = $
$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}$ is equal to$......$.
$1 + \cos \,{56^o} + \cos \,{58^o} - \cos {66^o} = $
If $sin t + cos t = \frac{1}{5}$ then $tan \frac{t}{2}$ is equal to :
The value of $\frac{{3 + \cot {{76}^o}\cot {{16}^o}}}{{\cot {{76}^o} + \cot {{16}^o}}}$