If $\sin \theta = \frac{1}{2}\left( {\sqrt {\frac{x}{y}\,} + \,\sqrt {\frac{y}{x}} } \right)\,,\,\left( {x,y \in R\, - \{ 0\} } \right)$. Then
$x=y$
$ x < y $
$x>y$
$x+y$ = $1\ \forall\ x,y \in R$
If $A = 580^o$ then which one of the following is true
If $\frac{{2\sin \alpha }}{{\{ 1 + \cos \alpha + \sin \alpha \} }} = y,$ then $\frac{{\{ 1 - \cos \alpha + \sin \alpha \} }}{{1 + \sin \alpha }} = $
If $x\, sin \theta = y\, sin \, \left( {\theta \,\, + \,\,\frac{{2\,\pi }}{3}} \right) = z\, sin \, \left( {\theta \,\, + \,\,\frac{{4\,\pi }}{3}} \right)$ then :
If $0 < x , y < \pi$ and $\cos x +\cos y-\cos ( x + y )=\frac{3}{2},$ then $\sin x+\cos y$ is equal to ...... .
The value of $cot\, x + cot\, (60^o + x) + cot\, (120^o + x)$ is equal to :