3.Trigonometrical Ratios, Functions and Identities
normal

If $\sin \theta  = \frac{1}{2}\left( {\sqrt {\frac{x}{y}\,}  + \,\sqrt {\frac{y}{x}} } \right)\,,\,\left( {x,y \in R\, - \{ 0\} } \right)$. Then

A

$x=y$

B

$ x < y $

C

$x>y$

D

$x+y$ = $1\ \forall\ x,y \in  R$

Solution

$\frac{1}{2}\left( {\sqrt {\frac{x}{y}}  + \sqrt {\frac{y}{x}} } \right) \ge 1$

$\Rightarrow \sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=2$

$ \Rightarrow x=y$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.