- Home
- Standard 11
- Mathematics
3.Trigonometrical Ratios, Functions and Identities
normal
If $\sin \theta = \frac{1}{2}\left( {\sqrt {\frac{x}{y}\,} + \,\sqrt {\frac{y}{x}} } \right)\,,\,\left( {x,y \in R\, - \{ 0\} } \right)$. Then
A
$x=y$
B
$ x < y $
C
$x>y$
D
$x+y$ = $1\ \forall\ x,y \in R$
Solution
$\frac{1}{2}\left( {\sqrt {\frac{x}{y}} + \sqrt {\frac{y}{x}} } \right) \ge 1$
$\Rightarrow \sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}=2$
$ \Rightarrow x=y$
Standard 11
Mathematics