જો $x = \sin {130^o}\,\cos {80^o},\,\,y = \sin \,{80^o}\,\cos \,{130^o},\,\,z = 1 + xy,$ તો આપેલ પૈકી ક્યૂ સત્ય છે.
$x > 0,\,\,y > 0,\,\,z > 0$
$x > 0,\,\,y < 0,\,\,0 < z < 1$
$x > 0,\,\,y < 0,\,\,z > 1$
$x < 0,\,\,y < 0,\,0 < z < 1$
$2 \sin \left(\frac{\pi}{22}\right) \sin \left(\frac{3 \pi}{22}\right) \sin \left(\frac{5 \pi}{22}\right) \sin \left(\frac{7 \pi}{22}\right) \sin \left(\frac{9 \pi}{22}\right)$ =
જો $\frac{{2\sin \alpha }}{{\{ 1 + \cos \alpha + \sin \alpha \} }} = y,$ તો $\frac{{\{ 1 - \cos \alpha + \sin \alpha \} }}{{1 + \sin \alpha }} = $
$96 \cos \frac{\pi}{33} \cos \frac{2 \pi}{33} \cos \frac{4 \pi}{33} \cos \frac{8 \pi}{33} \cos \frac{16 \pi}{33}=...............$
જો $\theta = 3\, \alpha$ અને $sin\, \theta =$ $\frac{a}{{\sqrt {{a^2}\,\, + \,\,{b^2}} }}$. થાય તો $a \,cosec\, \alpha - b \,sec\, \alpha$ ની કિમત ............. થાય
જો $x\cos \theta = y\cos \,\left( {\theta + \frac{{2\pi }}{3}} \right) = z\cos \,\left( {\theta + \frac{{4\pi }}{3}} \right),$ તો $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$ ની કિમંત મેળવો.