If $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, then $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}$ is

  • A

    $< 1$

  • B

    $> 1$

  • C

    $= 1$

  • D

    None of these

Similar Questions

$\frac{{\cos A}}{{1 - \sin A}} = $

The value of $\frac{{3 + \cot \,7\,{6^ \circ }\,\cot \,{{16}^ \circ }}}{{\cot \,{{76}^ \circ } + \cot \,{{16}^ \circ }}}$ is :

$4 \,\,sin5^o \,\,sin55^o \,\,sin65^o$ has the values equal to

$2\sin A{\cos ^3}A - 2{\sin ^3}A\cos A = $

If $A + B + C = \pi ,$ then $\cos \,\,2A + \cos \,\,2B + \cos \,\,2C = $