જો $\alpha ,\,\beta ,\,\gamma \in \,\left( {0,\,\frac{\pi }{2}} \right)$, તો $\frac{{\sin \,(\alpha + \beta + \gamma )}}{{\sin \alpha + \sin \beta + \sin \gamma }}  = . . ..$

  • A

    $< 1$

  • B

    $> 1$

  • C

    $1$

  • D

    એકપણ નહિ.

Similar Questions

 $[1 - sin (3\pi - \alpha ) + cos (3\pi + \alpha )]$ $\left[ {1\,\, - \,\,\sin \,\left( {\frac{{3\,\pi }}{2}\,\, - \,\,\alpha } \right)\,\, + \,\,\cos \,\left( {\frac{{5\,\pi }}{2}\,\, - \,\,\alpha } \right)} \right]$ = 

$\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = $

  • [IIT 1974]

$\cos \frac{\pi }{7}\cos \frac{{2\pi }}{7}\cos \frac{{3\pi }}{7} =$

સાબિત કરો કે, $=\frac{\sin 5 x-2 \sin 3 x+\sin x}{\cos 5 x-\cos x}=\tan x$

 $(sinx + cosecx)^2 + (cosx + secx)^2 - ( tanx + cotx)^2$ =