Prove that $\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=-\frac{\sin 2 x}{\cos 10 x}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that

$\cos A - \cos B =  - 2\sin \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right),$

$\sin A - \sin B = 2\cos \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right)$

$\therefore$ $L.H.S.$ $=\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}$

$=\frac{-2 \sin \left(\frac{9 x+5 x}{2}\right) \cdot \sin \left(\frac{9 x-5 x}{2}\right)}{2 \cos \left(\frac{17 x+3 x}{2}\right) \cdot \sin \left(\frac{17 x-3 x}{2}\right)}$

$=\frac{-2 \sin 7 x \cdot \sin 2 x}{2 \cos 10 x \cdot \sin 7 x}$

$=-\frac{\sin 2 x}{\cos 10 x}$

$=R. H.S.$

Similar Questions

If $\tan x + \tan \left( {\frac{\pi }{3} + x} \right) + \tan \left( {\frac{{2\pi }}{3} + x} \right) = 3,$ then

Let $S=\left\{x \in(-\pi, \pi): x \neq 0, \pm \frac{\pi}{2}\right\}$. The sum of all distinct solutions of the equation $\sqrt{3} \sec x+\operatorname{cosec} x+2(\tan x-\cot x)=0$ in the set $S$ is equal to

  • [IIT 2016]

The value of $\tan 81^{\circ}-\tan 63^{\circ}-\tan 27^{\circ}+\tan 9^{\circ}$ is

  • [KVPY 2012]

Prove that $\cot x \cot 2 x-\cot 2 x \cot 3 x-\cot 3 x \cot x=1$

$2{\cos ^2}\theta - 2{\sin ^2}\theta = 1$, then $\theta  =$ .......$^o$