- Home
- Standard 11
- Mathematics
3.Trigonometrical Ratios, Functions and Identities
easy
Prove that $\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=-\frac{\sin 2 x}{\cos 10 x}$
Option A
Option B
Option C
Option D
Solution
It is known that
$\cos A – \cos B = – 2\sin \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A – B}}{2}} \right),$
$\sin A – \sin B = 2\cos \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A – B}}{2}} \right)$
$\therefore$ $L.H.S.$ $=\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}$
$=\frac{-2 \sin \left(\frac{9 x+5 x}{2}\right) \cdot \sin \left(\frac{9 x-5 x}{2}\right)}{2 \cos \left(\frac{17 x+3 x}{2}\right) \cdot \sin \left(\frac{17 x-3 x}{2}\right)}$
$=\frac{-2 \sin 7 x \cdot \sin 2 x}{2 \cos 10 x \cdot \sin 7 x}$
$=-\frac{\sin 2 x}{\cos 10 x}$
$=R. H.S.$
Standard 11
Mathematics