Prove that $\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}=-\frac{\sin 2 x}{\cos 10 x}$
It is known that
$\cos A - \cos B = - 2\sin \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right),$
$\sin A - \sin B = 2\cos \left( {\frac{{A + B}}{2}} \right)\sin \left( {\frac{{A - B}}{2}} \right)$
$\therefore$ $L.H.S.$ $=\frac{\cos 9 x-\cos 5 x}{\sin 17 x-\sin 3 x}$
$=\frac{-2 \sin \left(\frac{9 x+5 x}{2}\right) \cdot \sin \left(\frac{9 x-5 x}{2}\right)}{2 \cos \left(\frac{17 x+3 x}{2}\right) \cdot \sin \left(\frac{17 x-3 x}{2}\right)}$
$=\frac{-2 \sin 7 x \cdot \sin 2 x}{2 \cos 10 x \cdot \sin 7 x}$
$=-\frac{\sin 2 x}{\cos 10 x}$
$=R. H.S.$
${\rm{cosec }}A - 2\cot 2A\cos A = $
If $\tan \,(A + B) = p,\,\,\tan \,(A - B) = q,$ then the value of $\tan \,2A$ in terms of $p$ and $q$ is
If $\frac{{5\pi }}{2} < x < 3\pi $, then the value of the expression $\frac{{\sqrt {1 - \sin x} + \sqrt {1 + \sin x} }}{{\sqrt {1 - \sin x} - \sqrt {1 + \sin x} }}$ is
In any triangle $ABC ,$ ${\sin ^2}\frac{A}{2} + {\sin ^2}\frac{B}{2} + {\sin ^2}\frac{C}{2}$ is equal to
The value of $cos\, \frac{\pi }{{10}} \,cos\, \frac{2\pi }{{10}} \,cos\,\frac{4\pi }{{10}}\, cos\,\frac{8\pi }{{10}}\, cos\,\frac{16\pi }{{10}}$ is