Trigonometrical Equations
medium

यदि $\sqrt 3 \cos \,\theta  + \sin \theta  = \sqrt 2 ,$ तो $\theta $ का व्यापक मान है

A

$n\pi + {( - 1)^n}\frac{\pi }{4}$

B

${( - 1)^n}\frac{\pi }{4} - \frac{\pi }{3}$

C

$n\pi + \frac{\pi }{4} - \frac{\pi }{3}$

D

$n\pi + {( - 1)^n}\frac{\pi }{4} - \frac{\pi }{3}$

Solution

$\frac{{\sqrt 3 }}{2}\cos \theta  + \frac{1}{2}\sin \theta  = \frac{{\sqrt 2 }}{2}$,{$\sqrt {{{(\sqrt 3 )}^2} + {1^2}}  = 2$ से भाग देने पर }

$ \Rightarrow $ $\sin \left( {\theta  + \frac{\pi }{3}} \right) = \frac{1}{{\sqrt 2 }} = \sin \left( {\frac{\pi }{4}} \right)$

$ \Rightarrow $ $\theta  = n\pi  + {( – 1)^n}\frac{\pi }{4} – \frac{\pi }{3}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.