If 2tan2θ=sec2θ, then the general value of θ is
nπ+π4
nπ−π4
nπ±π4
2nπ±π4
If cosx=2cosy−12−cosy,x,y∈(0,π), then tan(x/2)cot(y/2)=
cotθ=sin2θ(θ≠nπ, n is integer), if θ=
The equation sin4x+cos4x+sin2x+α=0 is solvable for
If cosx+secx=−2, then for a +ve integer n, cosnx+secnx is
cos(α−β)=1 and cos(α+β)=1/e , where α,β∈[−π,π] . Number of pairs of (α,β) which satisfy both the equations is