- Home
- Standard 11
- Mathematics
$[2,3]$ अंतराल में समीकरण $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ के कितने हल $x$ संभव हैं :
$0$
$1$
$2$
$3$
Solution
(c)
Given,
$\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$
$\Rightarrow \quad \sin \left(x+x^2\right)=\sin \left(x^2\right)+\sin x$
$\Rightarrow 2 \sin \left(\frac{x+x^2}{2}\right) \cos \left(\frac{x+x^2}{2}\right)$
$=2 \sin \left(\frac{x^2+x}{2}\right) \cos \left(\frac{x^2-x}{2}\right)$
$\sin \left(\frac{x+x^2}{2}\right)=0$
or $\cos \left(\frac{x^2+x}{2}\right)-\cos \left(\frac{x^2-x}{2}\right)=0$
$\frac{x^2+x}{2}=x \pi$ or $2 \sin \frac{x^2}{2} \sin \frac{x}{2}=0$
$\Rightarrow \frac{x^2+x}{2}=0, \pi, 2 \pi$ or $\frac{x^2}{2}=0, \pi, \frac{n}{2}=0, \pi, 2 \pi$
$\Rightarrow x^2+x=2 \pi$ or $x^2=2 \pi$
$\Rightarrow x^2+x-2 \pi=0$ or $x=\sqrt{2 \pi}$
$x=\frac{-1 \pm \sqrt{1+8 \pi}}{2}$ or $2<\sqrt{2} \pi<3$
$\sqrt{1+8 \pi} \approx \sqrt{25.14}$
$x=\frac{5.2-1-4.2-2.1}{2}$
$\because$ 'Total numbers of solution lies between
$(2,3)=2$