Trigonometrical Equations
medium

જો $\cos 7\theta = \cos \theta - \sin 4\theta $, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

A

$\frac{{n\pi }}{4},\frac{{n\pi }}{3} + \frac{\pi }{{18}}$

B

$\frac{{n\pi }}{3},\frac{{n\pi }}{3} + {( - 1)^n}\frac{\pi }{{18}}$

C

$\frac{{n\pi }}{4},\frac{{n\pi }}{3} + {( - 1)^n}\frac{\pi }{{18}}$

D

$\frac{{n\pi }}{6},\frac{{n\pi }}{3} + {( - 1)^n}\frac{\pi }{{18}}$

Solution

(c) $\sin 4\theta = \cos \theta – \cos 7\theta $ 

==> $\sin 4\theta = 2\sin (4\theta )\sin (3\theta )$

$ \Rightarrow $ $\sin 4\theta = 0 $

$\Rightarrow $ $4\theta = n\pi $ 

or $\sin 3\theta = \frac{1}{2} = \sin \left( {\frac{\pi }{6}} \right)$

$ \Rightarrow $ $3\theta = n\pi + {( – 1)^n}\frac{\pi }{6} $

$\Rightarrow \theta = \frac{{n\pi }}{4},\,\frac{{n\pi }}{3} + {( – 1)^n}\frac{\pi }{{18}}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.