જો $\cos \theta + \sec \theta = \frac{5}{2}$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$n\pi \pm \frac{\pi }{3}$
$2n\pi \pm \frac{\pi }{6}$
$n\pi \pm \frac{\pi }{6}$
$2n\pi \pm \frac{\pi }{3}$
$2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ તો $x = $
જો $\sec x\cos 5x + 1 = 0$, કે જ્યાં $0 < x < 2\pi $, તો $x =$
જો $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) = - 2$, તો $x = . . . . $ (કે જ્યાં $k \in Z$)
અંતરાલ $[0,2 \pi]$ માં સમીકરણ $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ ના ભિન્ન બીજની સંખ્યા મેળવો.
અહી $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$ હોય તો . . .