Trigonometrical Equations
easy

જો $\cos \theta + \sec \theta = \frac{5}{2}$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

A

$n\pi \pm \frac{\pi }{3}$

B

$2n\pi \pm \frac{\pi }{6}$

C

$n\pi \pm \frac{\pi }{6}$

D

$2n\pi \pm \frac{\pi }{3}$

Solution

(d) ${\cos ^2}\theta – \frac{5}{2}\cos \theta + 1 = 0$

$ \Rightarrow $ $\cos \theta = \frac{{(5/2) \pm \sqrt {(25/4) – 4} }}{2} = \frac{{5 \pm 3}}{4}$

Rejecting $(+)$ sign,

$ \Rightarrow $ $\cos \theta = \frac{1}{2} = \cos \left( {\frac{\pi }{3}} \right) $

$\Rightarrow \theta = 2n\pi \pm \frac{\pi }{3}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.