यदि $\cos \theta + \sec \theta = \frac{5}{2}$, तो $\theta $ का व्यापक मान है
$n\pi \pm \frac{\pi }{3}$
$2n\pi \pm \frac{\pi }{6}$
$n\pi \pm \frac{\pi }{6}$
$2n\pi \pm \frac{\pi }{3}$
$a\cos x + b\sin x = c$ का व्यापक हल है, जहाँ $a,\,\,b,\,\,c$ नियतांक हैं
अन्तराल $[0, 5 \pi ]$ में $x$ के मानों की संख्या जो समीकरण $3{\sin ^2}x - 7\sin x + 2 = 0$ को संतुष्ट करे, है
समीकरण $2\cos ({e^x}) = {5^x} + {5^{ - x}}$ के हलों की संख्या है
निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\sec ^{2} 2 x=1-\tan 2 x$
त्रिभुज $P Q R$ में, $P$ वृहत्तम कोण है तथा $\cos P=\frac{1}{3}$ । इसके अतिरिक्त त्रिभुज का अन्तःवृत्त भुजाओं $P Q, Q R$ तथा $R P$ को क्रमशः $N, L$ तथा $M$ पर इस तरह स्पर्श करता है कि $P N, Q L$ तथा $R M$ की लम्बाईयाँ क्रमागत सम पूर्ण संख्याएं है। तब त्रिभुज की भुजा (भुजाओं) की सम्भावित लम्बाई (लम्बाईयाँ) है (हैं)
$(A)$ $16$ $(B)$ $18$ $(C)$ $24$ $(D)$ $22$