Trigonometrical Equations
easy

यदि $\cos \theta  + \sec \theta  = \frac{5}{2}$, तो $\theta $ का व्यापक मान है

A

$n\pi \pm \frac{\pi }{3}$

B

$2n\pi \pm \frac{\pi }{6}$

C

$n\pi \pm \frac{\pi }{6}$

D

$2n\pi \pm \frac{\pi }{3}$

Solution

${\cos ^2}\theta  – \frac{5}{2}\cos \theta  + 1 = 0$

$ \Rightarrow $ $\cos \theta  = \frac{{(5/2) \pm \sqrt {(25/4) – 4} }}{2} = \frac{{5 \pm 3}}{4}$

$(+)$ चिन्ह की उपेक्षा करने पर,

$ \Rightarrow $ $\cos \theta  = \frac{1}{2} = \cos \left( {\frac{\pi }{3}} \right)$

$\Rightarrow \theta  = 2n\pi  \pm \frac{\pi }{3}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.