Trigonometrical Equations
medium

જો $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $ તો  $\theta $ નો વ્યાપક ઉકેલ મેળવો.

A

$2n\pi \pm \frac{\pi }{3}$

B

$2n\pi + \frac{\pi }{4}$

C

$n\pi \pm \frac{\pi }{3}$

D

$n\pi - \frac{\pi }{3}$

Solution

(a) $4 – 4{\cos ^2}\theta + 2\,(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $

$ \Rightarrow $ $4{\cos ^2}\theta – 2\,(\sqrt 3 + 1)\cos \theta + \sqrt 3 = 0$

$ \Rightarrow $ $\cos \theta = \frac{{2(\sqrt 3 + 1) \pm \sqrt {4{{(\sqrt 3 + 1)}^2} – 16\sqrt 3 } }}{8}$

$ \Rightarrow $ $\cos \theta = \frac{{\sqrt 3 }}{2}{\rm{ or}}\,\,{\rm{1/2}}$

$\Rightarrow \theta = 2n\pi \pm \frac{\pi }{6}$ or $2n\pi \pm \pi /3$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.