જો $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$2n\pi \pm \frac{\pi }{3}$
$2n\pi + \frac{\pi }{4}$
$n\pi \pm \frac{\pi }{3}$
$n\pi - \frac{\pi }{3}$
આપેલ સમીકરણના વ્યાપક ઉકેલ શોધો : $\sin 2 x+\cos x=0$
જો $\cos ec\,\theta = \frac{{p + q}}{{p - q}}$ $\left( {p \ne q \ne 0} \right)$, તો $\left| {\cot \left( {\frac{\pi }{4} + \frac{\theta }{2}} \right)} \right|$ = .......
સમીકરણ $(\sqrt 3 - 1)\,\sin \,\theta \, + \,(\sqrt 3 + 1)\,\cos \theta \, = \,2$ ના બધા $n \in Z$ ના વ્યાપક ઉકેલ મેળવો.
જો સમીકરણ $tan^4x -2sec^2x + [a]^2 = 0$ ને ઓછામાં ઓછા એક ઉકેલ હોય તો $'a'$ નો વિસ્તારગણ મેળવો (જ્યાં $a \in R$ )
(નોંધ : $[.]$ એ પૂર્ણાક મહતમ વિધેય છે)
સમીકરણ $cosec\, \theta -cot \,\theta = 1$ ના $[0,2 \pi]$ માં ઉકેલોની સંખ્યા ...... મળે