જો $4{\sin ^2}\theta + 2(\sqrt 3 + 1)\cos \theta = 4 + \sqrt 3 $ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$2n\pi \pm \frac{\pi }{3}$
$2n\pi + \frac{\pi }{4}$
$n\pi \pm \frac{\pi }{3}$
$n\pi - \frac{\pi }{3}$
$‘a’$ ની .............. કિમતો માટે $cos\, 2x + a\, sin\, x = 2a - 7$ ના ઉકેલો શક્ય છે
સમીકરણ $cosec\, \theta -cot \,\theta = 1$ ના $[0,2 \pi]$ માં ઉકેલોની સંખ્યા ...... મળે
$\left| {\sqrt {2\,{{\sin }^4}\,x\, + \,18\,{{\cos }^2}\,x} - \,\sqrt {2\,{{\cos }^4}\,x\, + \,18\,{{\sin }^2}\,x} } \right| = 1$ ના $x \in [0,2\pi ]$ માં ઉકેલોની સંખ્યા .......... છે.
જો કોઈ $0 < \alpha < \frac{\pi }{2}$ માટે ત્રિકોણ ની બાજુઓ $\sin \alpha ,\,\cos \alpha $ અને $\sqrt {1 + \sin \alpha \cos \alpha } $ આપેલ છે તો ત્રિકોણનો સૌથી મોટો ખૂણો......$^o$ મેળવો.
જો $\mathrm{n}$ એ સમીકરણ $2 \cos x\left(4 \sin \left(\frac{\pi}{4}+x\right) \sin \left(\frac{\pi}{4}-x\right)-1\right)=1, x \in[0, \pi]$ નાં ઉકેલની સંખ્યા છે અને $S$ એ ઉકેલનો સરવાળો છે તો ક્રમયુક્ત $(\mathrm{n}, \mathrm{S})$ જોડ મેળવો.