If $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, then the general value of $\theta $ is

  • A

    $2n\pi \pm \frac{\pi }{6}$

  • B

    $2n\pi \pm \frac{\pi }{3}$

  • C

    $n\pi \pm \frac{\pi }{3}$

  • D

    $n\pi \pm \frac{\pi }{6}$

Similar Questions

General solution of the equation $\cot \theta - \tan \theta = 2$ is

If $\sqrt 2 \sec \theta + \tan \theta = 1,$ then the general value $\theta $ is

If $\theta $ and $\phi $ are acute satisfying $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3},$ then $\theta + \phi \in $

  • [IIT 2004]

Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then

  • [KVPY 2018]

If $\cos p\theta = \cos q\theta ,p \ne q$, then