If $\cot \theta + \cot \left( {\frac{\pi }{4} + \theta } \right) = 2$, then the general value of $\theta $ is
$2n\pi \pm \frac{\pi }{6}$
$2n\pi \pm \frac{\pi }{3}$
$n\pi \pm \frac{\pi }{3}$
$n\pi \pm \frac{\pi }{6}$
General solution of the equation $\cot \theta - \tan \theta = 2$ is
If $\sqrt 2 \sec \theta + \tan \theta = 1,$ then the general value $\theta $ is
If $\theta $ and $\phi $ are acute satisfying $\sin \theta = \frac{1}{2},$ $\cos \phi = \frac{1}{3},$ then $\theta + \phi \in $
Let $S=\{x \in R: \cos (x)+\cos (\sqrt{2} x)<2\}$, then
If $\cos p\theta = \cos q\theta ,p \ne q$, then