यदि $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, तो $\theta $ का व्यापक मान है
$2n\pi + \frac{\pi }{4}$
$2n\pi \pm \frac{\pi }{4}$
$2n\pi - \frac{\pi }{4}$
इनमें से कोई नहीं
यदि समीकरण $\cos p\theta + \cos q\theta = 0,\;p > 0,\;q > 0$ के लिए हल समान्तर श्रेणी में हों, तो अंकिक रूप से न्यूनतम सार्वान्तर होगा
माना $S=\left\{x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right): 9^{1-\tan ^2 x}+9^{\tan ^2 x}=10\right\}$ तथा $\beta=\sum_{\mathrm{x} \in \mathrm{S}} \tan ^2\left(\frac{\mathrm{x}}{3}\right)$, तो $\frac{1}{6}(\beta-14)^2$ बराबर है
निम्नलिखित समीकरणों का मुख्य तथा व्यापक हल ज्ञात कीजिए
$\tan x=\sqrt{3}$.
माना $S=\left\{\theta \in(0,2 \pi): 7 \cos ^2 \theta-3 \sin ^2 \theta-2\right.$ $\left.\cos ^2 2 \theta=2\right\}$ है। तब सभी समीकरणों $x ^2-2\left(\tan ^2 \theta+\cot ^2 \theta\right) x +6 \sin ^2 \theta=0, \theta \in S$ के मूलों का योग है $..............$
यदि ${\sec ^2}\theta = \frac{4}{3}$, तो $\theta $ का व्यापक मान है