સમીકરણ $32^{\tan ^{2} x}+32^{\sec ^{2} x}=81,0 \leq x \leq \frac{\pi}{4}$ ના ઉકેલની સંખ્યા મેળવો.
$3$
$1$
$0$
$2$
જો $1\,\, + \,\,\sin \theta \,\, + \,\,{\sin ^2}\theta + \ldots .\,\,to\,\,\infty \,\, = \,\,4\, + 2\sqrt 3 ,\,\,0\,\, < \,\theta \,\,\pi ,\,\,\theta \,\, \ne \,\frac{\pi }{2}\,,$ હોય તો $\theta = $
જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ તો $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }&{\cos \theta }\\{ - \sin \theta }&{\cos \theta }&{\sin \theta }\\{ - \cos \theta }&{ - \sin \theta }&{\cos \theta }\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.
જો $\cos \,\alpha + \cos \,\beta = \frac{3}{2}$ અને $\sin \,\alpha + \sin \,\beta = \frac{1}{2}$ હોય તથા $\theta $ એ $\alpha $ અને $\beta $ નો સમાંતર મઘ્યક હોય તો $\sin \,2\theta + \cos \,2\theta $= .......
જો $12{\cot ^2}\theta - 31\,{\rm{cosec }}\theta + {\rm{32}} = {\rm{0}}$, તો $\sin \theta = . . ..$