If $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) = - 2$, then $x = $ (where $k \in Z$)
$\frac{\pi }{3}(6k + 1)$
$\frac{\pi }{3}(6k - 1)$
$\frac{\pi }{3}(2k + 1)$
None of these
The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt 3 ,$ where $0 < \theta < 2\pi $ is
If ${\sin ^2}\theta - 2\cos \theta + \frac{1}{4} = 0,$ then the general value of $\theta $ is
The number of solutions of the equation $1 + {\sin ^4}\,x = {\cos ^2}\,3x,x\,\in \,\left[ { - \frac{{5\pi }}{2},\frac{{5\pi }}{2}} \right]$ is
$cos (\alpha \,-\,\beta ) = 1$ and $cos (\alpha +\beta ) = 1/e$ , where $\alpha , \beta \in [-\pi , \pi ]$ . Number of pairs of $(\alpha ,\beta )$ which satisfy both the equations is
$\tan \,{20^o}\cot \,{10^o}\cot \,{50^o}$ is equal to