જો $\cos 3x + \sin \left( {2x - \frac{{7\pi }}{6}} \right) = - 2$, તો $x = . . . . $ (કે જ્યાં $k \in Z$)
$\frac{\pi }{3}(6k + 1)$
$\frac{\pi }{3}(6k - 1)$
$\frac{\pi }{3}(2k + 1)$
એકપણ નહિ.
જો ${\sin ^2}\theta - 2\cos \theta + \frac{1}{4} = 0,$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $x = \frac{{n\pi }}{2}$ એ સમીકરણ $sin\, \frac{x}{2}- cos \frac{x}{2} = 1$ $- sin\, x$ & અસમતા $\left| {\frac{x}{2}\,\, - \,\,\frac{\pi }{2}} \right|\,\, \le \,\,\frac{{3\pi }}{4}$ ને સંતોષે તો
સમીકરણ $cosec\, \theta -cot \,\theta = 1$ ના $[0,2 \pi]$ માં ઉકેલોની સંખ્યા ...... મળે
સમીકરણ $(\sqrt 3 - 1)\,\sin \,\theta \, + \,(\sqrt 3 + 1)\,\cos \theta \, = \,2$ ના બધા $n \in Z$ ના વ્યાપક ઉકેલ મેળવો.
જો $\tan 2\theta \tan \theta = 1$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.