- Home
- Standard 11
- Mathematics
Trigonometrical Equations
easy
If $\cos {40^o} = x$ and $\cos \theta = 1 - 2{x^2}$, then the possible values of $\theta $ lying between ${0^o}$ and ${360^o}$is
A
${100^o}$ and ${260^o}$
B
${80^o}$ and ${280^o}$
C
${280^o}$ and ${110^o}$
D
${110^o}$ and ${260^o}$
Solution
(a) Here $\cos \theta = 1 – 2{\cos ^2}{40^o}$
$= – (2{\cos ^2}{40^o} – 1)$ $ = – \cos (2 \times {40^o})$
$= – \cos {80^o}$ = $\cos ({180^o} + {80^o}) = \cos ({180^o} – {80^o})$
Hence, $\cos 260^\circ {\rm{and}}\cos 100^\circ $
$i.e.$, $\theta = 100^\circ $ and $260^\circ$.
Standard 11
Mathematics
Similar Questions
normal