Trigonometrical Equations
easy

If $\cos {40^o} = x$ and $\cos \theta = 1 - 2{x^2}$, then the possible values of $\theta $ lying between ${0^o}$ and ${360^o}$is

A

${100^o}$ and ${260^o}$

B

${80^o}$ and ${280^o}$

C

${280^o}$ and ${110^o}$

D

${110^o}$ and ${260^o}$

Solution

(a) Here $\cos \theta = 1 – 2{\cos ^2}{40^o}$ 

$= – (2{\cos ^2}{40^o} – 1)$ $ = – \cos (2 \times {40^o})$

$=  – \cos {80^o}$ = $\cos ({180^o} + {80^o}) = \cos ({180^o} – {80^o})$ 

Hence, $\cos 260^\circ {\rm{and}}\cos 100^\circ $ 

$i.e.$, $\theta = 100^\circ $ and $260^\circ$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.