If $\cos {40^o} = x$ and $\cos \theta = 1 - 2{x^2}$, then the possible values of $\theta $ lying between ${0^o}$ and ${360^o}$is
${100^o}$ and ${260^o}$
${80^o}$ and ${280^o}$
${280^o}$ and ${110^o}$
${110^o}$ and ${260^o}$
The general solution of $\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ is
The number of values of $\theta $ in $[0, 2\pi]$ satisfying the equation $2{\sin ^2}\theta = 4 + 3$$\cos \theta $ are
If $\tan \theta + \tan 2\theta + \sqrt 3 \tan \theta \tan 2\theta = \sqrt 3 ,$ then
If $3({\sec ^2}\theta + {\tan ^2}\theta ) = 5$, then the general value of $\theta $ is
Let $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$.Then