Trigonometrical Equations
easy

જો $\cos \theta = - \frac{1}{{\sqrt 2 }}$અને $\tan \theta = 1$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.

A

$2n\pi + \frac{\pi }{4}$

B

$(2n + 1)\,\pi + \frac{\pi }{4}$

C

$n\pi + \frac{\pi }{4}$

D

$n\pi \pm \frac{\pi }{4}$

Solution

(b) $\cos \theta = – \frac{1}{{\sqrt 2 }} \Rightarrow \theta = \frac{{3\pi }}{4},\,\frac{{5\pi }}{4}$;

$\tan \theta = 1 \Rightarrow \theta = \frac{\pi }{4},\,\frac{{5\pi }}{4}$

$\therefore $ The general value is $2n\pi + \frac{{5\pi }}{4}$ or $(2n + 1)\pi + \frac{\pi }{4}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.