ગણ $S=\left\{x \in R : 2 \cos \left(\frac{x^{2}+x}{6}\right)=4^{x}+4^{-x}\right\}$ ની સભ્ય સંખ્યા $.....$ થાય.
$1$
$3$
$0$
અનંત
સમીકરણ $3\cos x + 4\sin x = 6$ ના બીજની સંખ્યા . . . . છે.
અહી $S$ એ અંતરાલ $[0,4 \pi]$ માં સમીકરણ $\sin ^{4} \theta+\cos ^{4} \theta-\sin \theta \cos \theta=0$ ઉકેલનો સરવાળો દર્શાવે છે તો $\frac{8 \mathrm{~S}}{\pi}$ ની કિમંત મેળવો.
જો $f(x) = sinx + 2sin^2x + 3sin^3x + 4sin^4x+....\infty $ ,હોય તો સમીકરણ $f(x) = 2$ ના $x \in \left[ { - \pi ,\pi } \right] - \left\{ { \pm \frac{\pi }{2}} \right\}$ માં કેટલા ઉકેલો મળે?
જો $sin \,3x\, = cos\, 2x$ હોય તો અંતરાલ $\left( {\frac{\pi }{2},\pi } \right)$ માં ઉકેલોની સંખ્યા મેળવો.
સમીરકણ $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ નો બીજ મેળવો.