यदि $\sin (A + B) =1$ तथा $\cos (A - B) = \frac{{\sqrt 3 }}{2},$ तो $A$ तथा $B$ के न्यूनतम धनात्मक मान हैं

  • A

    ${60^o},{\rm{ }}{30^o}$

  • B

    ${75^o},{\rm{ }}{15^o}$

  • C

    ${45^o},{\rm{ }}{60^o}$

  • D

    ${45^o},{\rm{ }}{45^o}$

Similar Questions

यदि समीकरण $\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right)$ का हल $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$ हैं, जहाँ, $\alpha, \beta$ पूर्णांक है, तो $\alpha+\beta$ बराबर है :

  • [JEE MAIN 2023]

$\cos x=\frac{1}{2}$ को हल कीजिए।

$\theta $ का वह मान, जो समीकरण $\cos \theta  + \sqrt 3 \sin \theta = 2$ को सन्तुष्ट करता है, है   

यदि $(1 + \tan \theta )(1 + \tan \phi  ) = 2$, तब $\theta  + \phi  =$ ......$^o$

निम्नलिखित समीकरणों का मुख्य तथा व्यापक हल ज्ञात कीजिए

$\cot x=-\sqrt{3}$