यदि $\sin (A + B) =1$ तथा $\cos (A - B) = \frac{{\sqrt 3 }}{2},$ तो $A$ तथा $B$ के न्यूनतम धनात्मक मान हैं
${60^o},{\rm{ }}{30^o}$
${75^o},{\rm{ }}{15^o}$
${45^o},{\rm{ }}{60^o}$
${45^o},{\rm{ }}{45^o}$
यदि समीकरण $\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right)$ का हल $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$ हैं, जहाँ, $\alpha, \beta$ पूर्णांक है, तो $\alpha+\beta$ बराबर है :
$\cos x=\frac{1}{2}$ को हल कीजिए।
$\theta $ का वह मान, जो समीकरण $\cos \theta + \sqrt 3 \sin \theta = 2$ को सन्तुष्ट करता है, है
यदि $(1 + \tan \theta )(1 + \tan \phi ) = 2$, तब $\theta + \phi =$ ......$^o$
निम्नलिखित समीकरणों का मुख्य तथा व्यापक हल ज्ञात कीजिए
$\cot x=-\sqrt{3}$