- Home
- Standard 11
- Mathematics
समीकरण $(\sqrt 3 - 1)\sin \theta + (\sqrt 3 + 1)\cos \theta = 2$ का व्यापक हल है
$2n\pi \pm \frac{\pi }{4} + \frac{\pi }{{12}}$
$n\pi + {( - 1)^n}\frac{\pi }{4} + \frac{\pi }{{12}}$
$2n\pi \pm \frac{\pi }{4} - \frac{\pi }{{12}}$
$n\pi + {( - 1)^n}\frac{\pi }{4} - \frac{\pi }{{12}}$
Solution
माना $\sqrt 3 + 1 = r\cos \alpha $ तथा $\sqrt 3 – 1 = r\sin \alpha $.
तब $r = \sqrt {{{(\sqrt 3 + 1)}^2} + {{(\sqrt 3 – 1)}^2}} = 2\sqrt 2 $
$tan\alpha = \frac{{\sqrt 3 – 1}}{{\sqrt 3 + 1}} = \frac{{1 – (1/\sqrt 3 )}}{{1 + (1/\sqrt 3 )}} = \tan \left( {\frac{\pi }{4} – \frac{\pi }{6}} \right) $
$\Rightarrow \alpha = \frac{\pi }{{12}}$
दिये गये समीकरण को लिखा जा सकता है
$2\sqrt 2 \cos (\theta – \alpha ) = 2 $
$\Rightarrow \cos \left( {\theta – \frac{\pi }{{12}}} \right) = \cos \frac{\pi }{4}$
$ \Rightarrow $ $\theta – \frac{\pi }{{12}} = 2n\pi \pm \frac{\pi }{4} $
$\Rightarrow \theta = 2n\pi \pm \frac{\pi }{4} + \frac{\pi }{{12}}$.