यदि $\cos {40^o} = x$ और $\cos \theta = 1 - 2{x^2}$ हो, तो ${0^o}$ और ${360^o}$ के बीच में $\theta $ के सम्भावित मान हैं
${100^o}$ तथा ${260^o}$
${80^o}$ तथा ${280^o}$
${280^o}$ तथा ${110^o}$
${110^o}$ तथा ${260^o}$
$\tan (x - y) = 1,\,$ $\sec (x + y) = \frac{2}{{\sqrt 3 }}$ को सन्तुष्ट करने वाले $x$ तथा $y$ के धनात्मक मान हैं
$[0,2 \pi]$ में $\alpha$ के उन मानों की संख्या, जिनके लिए $2 \sin ^{3} \alpha-7 \sin ^{2} \alpha+7 \sin \alpha=2$ है
समीकरण $\sin x=\frac{\sqrt{3}}{2}$ का मुख्य हल ज्ञात कीजिए।
यदि $0 \leq x \leq 2 \pi$ है, तो $x$ के उन वास्तविक मानों की संख्या जो समीकरण $\cos x+\cos 2 x+\cos 3 x+\cos 4 x=0$ को संतुष्ट करते हैं, है
समीकरण $\left| {\,\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }&{\cos \theta }\\{ - \sin \theta }&{\cos \theta }&{\sin \theta }\\{ - \cos \theta }&{ - \sin \theta }&{\cos \theta }\end{array}\,} \right| = 0$ का व्यापक हल होगा