The number of solutions to $\sin \left(\pi \sin ^2 \theta\right)+\sin \left(\pi \cos ^2 \theta\right)=2 \cos \left(\frac{\pi}{2} \cos \theta\right)$ satisfying $0 \leq \theta \leq 2 \pi$ is

  • [KVPY 2019]
  • A

    $1$

  • B

    $2$

  • C

    $4$

  • D

    $7$

Similar Questions

If $\sec 4\theta - \sec 2\theta = 2$, then the general value of $\theta $ is

  • [IIT 1963]

The value of expression $\frac{{2(\sin {1^o} + \sin {2^o} + \sin {3^o} + ..... + \sin {{89}^o})}}{{2(\cos {1^o} + \cos {2^o} + .... + \cos {{44}^o}) + 1}}$ equals

The smallest positive angle which satisfies the equation $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$, is

Number of solutions of $8cosx$ = $x$ will be 

The solution of the equation $cos^2\theta\, +\, sin\theta\, + 1\, =\, 0$ lies in the interval