Trigonometrical Equations
medium

यदि $n$ एक पूर्णांक है, तब  $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ का व्यापक हल है

A

$x = 2n\pi - \frac{\pi }{{12}}$ या $x = 2n\pi + \frac{{7\pi }}{{12}}$

B

$x = n\pi \pm \frac{\pi }{{12}}$

C

$x = 2n\pi + \frac{\pi }{{12}}$ या $x = 2n\pi - \frac{{7\pi }}{{12}}$

D

$x = n\pi + \frac{\pi }{{12}}$ या $x = n\pi - \frac{{7\pi }}{{12}}$

Solution

दिया गया समीकरण है, $\cos x – \sin x = \frac{1}{{\sqrt 2 }}$

इस समीकरण को $\sqrt 2 $ से भाग देने पर,

$\frac{1}{{\sqrt 2 }}\cos x – \frac{1}{{\sqrt 2 }}\sin x = \frac{1}{2}$

$\cos \left( {\frac{\pi }{4} + x} \right) = \cos \frac{\pi }{3}$.

अत:  $\frac{\pi }{4} + x = 2n\pi  \pm \frac{\pi }{3}$

$x = 2n\pi  + \frac{\pi }{3} – \frac{\pi }{4} = 2n\pi  + \frac{\pi }{{12}}$

या $x = 2n\pi  – \frac{\pi }{3} – \frac{\pi }{4} = 2n\pi  – \frac{{7\pi }}{{12}}$.      

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.