Trigonometrical Equations
hard

$\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ का व्यापक हल है

A

$n\pi + \frac{\pi }{8}$

B

$\frac{{n\pi }}{2} + \frac{\pi }{8}$

C

${( - 1)^n}\frac{{n\pi }}{2} + \frac{\pi }{8}$

D

$2n\pi + {\cos ^{ - 1}}\frac{3}{2}$

(IIT-1989)

Solution

(b) $\sin x – 3\sin 2x + \sin 3x = \cos x – 3\cos 2x + \cos 3x$

$ \Rightarrow $$2\sin 2x\cos x – 3\sin 2x – 2\cos 2x\cos x + 3\cos 2x = 0$

$ \Rightarrow $ $\sin 2x(2\cos x – 3) – \cos 2x(2\cos x – 3) = 0$

$ \Rightarrow $$(\sin 2x – \cos 2x)\,\,(2\cos x – 3) = 0 \Rightarrow \sin 2x = \cos 2x$

                                                                   $(\,\because \cos x \ne 3/2)$

$ \Rightarrow $ $2x = 2n\pi \pm \left( {\frac{\pi }{2} – 2x} \right)$

अर्थात्  $x = \frac{{n\pi }}{2} + \frac{\pi }{8}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.