If $\tan \theta = - \frac{1}{{\sqrt 3 }}$ and $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, then the principal value of $\theta $ will be

  • A

    $\frac{\pi }{6}$

  • B

    $\frac{{5\pi }}{6}$

  • C

    $\frac{{7\pi }}{6}$

  • D

    $ - \frac{\pi }{6}$

Similar Questions

The solution of equation ${\cos ^2}\theta + \sin \theta + 1 = 0$ lies in the interval

  • [IIT 1992]

If $\sec x\cos 5x + 1 = 0$, where $0 < x < 2\pi $, then $x =$

  • [IIT 1963]

Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$

Let $S=\{\theta \in[0,2 \pi): \tan (\pi \cos \theta)+\tan (\pi \sin \theta)=0\}$.

Then $\sum_{\theta \in S } \sin ^2\left(\theta+\frac{\pi}{4}\right)$ is equal to

  • [JEE MAIN 2023]

If $\cos \theta + \sec \theta = \frac{5}{2}$, then the general value of $\theta $ is