If $\tan \theta = - \frac{1}{{\sqrt 3 }}$ and $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, then the principal value of $\theta $ will be
$\frac{\pi }{6}$
$\frac{{5\pi }}{6}$
$\frac{{7\pi }}{6}$
$ - \frac{\pi }{6}$
The only value of $x$ for which ${2^{\sin x}} + {2^{\cos x}} > {2^{1 - (1/\sqrt 2 )}}$ holds, is
The number of values of $x$ for which $sin\,\, 2x + cos\,\, 4x = 2$ is
If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are
If $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ then the value of $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
The number of solutions of the equation $x +2 \tan x =\frac{\pi}{2}$ in the interval $[0,2 \pi]$ is :