10-1.Circle and System of Circles
hard

यदि $a > 2b > 0$ तब $m$ का धनात्मक मान जिसके लिए $y = mx - b\sqrt {1 + {m^2}} $, वृत्तों ${x^2} + {y^2} = {b^2}$ तथा ${(x - a)^2} + {y^2} = {b^2}$ की उभयनिष्ठ स्पर्श रेखा है

A

$\frac{{2b}}{{\sqrt {{a^2} - 4{b^2}} }}$

B

$\frac{{\sqrt {{a^2} - 4{b^2}} }}{{2b}}$

C

$\frac{{2b}}{{a - 2b}}$

D

$\frac{b}{{a - 2b}}$

(IIT-2002)

Solution

(a) ${x^2} + {y^2} = {b^2}$ की स्पर्षी $y = mx – b\,\sqrt {1 + {m^2}} $ है।

यह ${(x – a)^2} + {y^2} = {b^2}$ को स्पर्श करती है यदि   

$\frac{{ma – b\sqrt {1 + {m^2}} }}{{\sqrt {{m^2} + 1} }} = b$

$⇒$  $ma = 2b\sqrt {1 + {m^2}} $

${m^2}{a^2} = 4{b^2} + 4{b^2}{m^2}$, 

$\therefore $$m =  \pm \,\frac{{2b}}{{\sqrt {{a^2} – 4{b^2}} }}$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.