10-1.Circle and System of Circles
hard

यदि $R$ त्रिज्या का एक वृत्त मूलबिन्दु $O$ से गुजरता है तथा निर्देशी अक्षों को बिन्दु $A$ तथा $B$ पर काटता है तो रेखा $A B$ पर स्थित बिन्दु $O$ से लम्ब के पाद का बिन्दुपथ होगा

A

${({x^2} + {y^2})^2} = 4{R^2}{x^2}{y^2}$

B

${({x^2} + {y^2})^3} = 4{R^2}{x^2}{y^2}$

C

${({x^2} + {y^2})^2} = 4R{x^2}{y^2}$

D

$({x^2} + {y^2})(x + y) = {R^2}xy$

(JEE MAIN-2019)

Solution

Slope of $AB = \frac{{ – h}}{k}$

Equation of $AB$ is $hx + ky = {h^2} + {k^2}$

$A\left( {\frac{{{h^2} + {k^2}}}{h},0} \right),B\left( {0,\frac{{{h^2} + {k^2}}}{k}} \right)$

$As,AB = 2R$

$ \Rightarrow {\left( {{h^2} + {k^2}} \right)^3} = 4{R^2}{h^2}{k^2}$

$ \Rightarrow {\left( {{x^2} + {y^2}} \right)^3} = 4{R^2}{x^2}{y^2}$

Standard 11
Mathematics

Similar Questions

माना कि $S$ एक वृत्त (circle) है जो $x y$-समतल (plane) में समीकरण (equation) $x^2+y^2=4$ के द्वारा परिभाषित है।

($1$) माना कि $E_1 E_2$ और $F_1 F_2$ वृत्त $S$ की ऐसी जीवायें (chords) हैं जो बिंदु $P_0(1,1)$ से गुजरती हैं और क्रमश: $x$-अक्ष (axis) व $y$-अक्ष के समान्तर (parallel) हैं। माना कि $G_1 G_2, S$ की वह जीवा है जो $P_0$ से गुजरती है और जिसकी प्रवणता (slope) -$1$ है। माना कि $E_1$ और $E_2$ पर $S$ की स्पर्शियाँ (tangents) $E_3$ पर मिलती हैं, $F_1$ और $F_2$ पर $S$ की स्पर्शियाँ $F_3$ पर मिलती हैं, तथा $G_1$ और $G_2$ पर $S$ की स्पर्शियाँ $G_3$ पर मिलती हैं। तब वह वक्र (curve) जिस पर बिंदु $E_3, F_3$ और $G_3$ स्थित हैं, है

$(A)$ $x+y=4$ $(B)$ $(x-4)^2+(y-4)^2=16$ $(C)$ $(x-4)(y-4)=4$ $(D)$ $x y=4$

($2$) माना कि $P$ वृत्त $S$ पर स्थित एक ऐसा बिंदु है जिसके दोनों निर्देशांक (coordinates) धनात्मक (positive) हैं। माना कि वृत्त $S$ के बिंदु $P$ पर स्पर्शी (tangent) निर्देशांक अक्षों (coordinate axes) को बिन्दुओं $M$ और $N$ पर प्रतिच्छेद (intersects) करती है। तब वह वक्र (curve) जिस पर रेखाखंड (line segement) $M N$ का मध्य बिंदु (mid-point) अनिवार्य रूप से स्थित है, है

$(A)$ $(x+y)^2=3 x y$ $(B)$ $x^{2 / 3}+y^{2 / 3}=2^{4 / 3}$ $(C)$ $x^2+y^2=2 x y$ $(D)$ $x^2+y^2=x^2 y^2$

इस प्रश्न के उतर दीजिये $1$ ओर $2.$

normal
(IIT-2018)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.