यदि $R$ त्रिज्या का एक वृत्त मूलबिन्दु $O$ से गुजरता है तथा निर्देशी अक्षों को बिन्दु $A$ तथा $B$ पर काटता है तो रेखा $A B$ पर स्थित बिन्दु $O$ से लम्ब के पाद का बिन्दुपथ होगा
${({x^2} + {y^2})^2} = 4{R^2}{x^2}{y^2}$
${({x^2} + {y^2})^3} = 4{R^2}{x^2}{y^2}$
${({x^2} + {y^2})^2} = 4R{x^2}{y^2}$
$({x^2} + {y^2})(x + y) = {R^2}xy$
निम्नांकित चित्र में $A B C D$ एक इकाई वर्ग है। विस्तारित $C D$ रेखा पर $O$ केंद्र वाला $A$ से गुजरता हुआ एक वृत्त खींचा जाता है। यदि विकर्ण $A C^{\circ}$ वृत्त पर स्पर्शज्या है, तब छायांकित क्षेत्र का क्षेत्रफल होगा
यदि एक रेखा $y = mx + c$ वृत्त $( x -3)^{2}+ y ^{2}=1$ की एक स्पर्श रेखा है तथा यह एक रेखा $L_{1}$ पर लम्ब है, जहाँ $L_{1}$ वृत्त $x ^{2}+ y ^{2}=1$ के बिन्दु $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ पर स्पर्श रेखा है, तो
मूल बिन्दु से वृत्त ${(x - 7)^2} + {(y + 1)^2} = 25$ पर खींची गयी दो स्पर्श रेखाओं के बीच का कोण है
बिन्दु $(0, 1)$ से वृत्त ${x^2} + {y^2} - 2x + 4y = 0$ पर खींची गयी स्पर्श रेखाओं के समीकरण हैं
यदि बिन्दु $(5, 3)$ से वृत्त ${x^2} + {y^2} + 2x + ky + 17 = 0$ पर खींची गई स्पर्श रेखा की लम्बाई $7$ हो, तो $k$ =