यदि अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की द्विगुणित कोटि $PQ$ ,इस प्रकार है कि $OPQ$ एक समबाहु त्रिभुज है, जबकि $O$ अतिपरवलय का केन्द्र है, तब अतिपरवलय की उत्केन्द्रता $e$ संतुष्ट करती है
$1 < e < 2/\sqrt 3 $
$e = 2/\sqrt 3 $
$e = \sqrt 3 /2$
$e > 2/\sqrt 3 $
एक दीर्घवृत्त के दीर्घ तथा लघु अक्षों की लम्बाइयाँ क्रमश: $10$ तथा $8$ हैं और उसका दीर्घ अक्ष $y$ - अक्ष है। दीर्घवृत्त के केन्द्र को मूलबिन्दु मानते हुये दीर्घवृत्त का समीकरण है
दीर्घवृत्त $9{x^2} + 25{y^2} = 225$ की उत्क्रेन्द्रता है
दीर्घवृत्त $4{x^2} + 9{y^2} - 16x - 54y + 61 = 0$ का केन्द्र है
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
$b=3, c=4,$ केंद्र मूल बिंदु पर, नाभियाँ $x$ अक्ष पर
बिंदु $(1,3)$ से दीर्घवृत्त $2 x^2+3 y^2=5$ पर डाली गई दो स्पर्श रेखाओं के बीच न्यून कोण है :