1.Relation and Function
medium

यादि $f(x) = \cos (\log x)$, तब  $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $

A

$ - 1$

B

$\frac{1}{2}$

C

$ - 2$

D

इनमे से कोई नहीं

(IIT-1983)

Solution

(d) दिया है $f(x) = \cos \,(\log x)\,\, \Rightarrow \,f(y) = \cos \,(\log y)$

तब $f(x).f(y) – \frac{1}{2}\left[ {f\left( {\frac{x}{y}} \right) + f(xy)} \right]$

$ = \cos \,(\log x)\cos \,(\log y) – \frac{1}{2}\left[ {\cos \left( {\log \frac{x}{y}} \right) + \cos \,(\log xy)} \right]$

$ = \cos \,(\log x)\,\cos \,(\log y) – \frac{1}{2}\,[2\cos \,(\log x)\cos \,(\log y)]= 0.$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.