यादि $f(x) = \cos (\log x)$, तब $f({x^2})f({y^2}) - \frac{1}{2}\left[ {f\,\left( {\frac{{{x^2}}}{2}} \right) + f\left( {\frac{{{x^2}}}{{{y^2}}}} \right)} \right]$ का मान है

  • A

    $-2$

  • B

    $-1$

  • C

    $1/2$

  • D

    इनमे से कोई नहीं

Similar Questions

माना फलन $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ किसी $\mathrm{m}$ के लिए $f(x)=\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x)+m-2\}$ द्वारा परिभाषित है तथा $\mathrm{f}$ का परिसर $[0,2]$ है। तो $\mathrm{m}$ का मान है__________. 

  • [JEE MAIN 2023]

मान लें कि $N$ एक धनात्मक संख्याओं का समुच्चय हैं। सभी $n \in N$ के लिए मान लें कि

$f_n=(n+1)^{1 / 3}-n^{1 / 3}$ एवं $A=\left\{n \in N : f_{n+1}<\frac{1}{3(n+1)^{2 / 3}} < f_n\right\}$ तब

  • [KVPY 2019]

$\mathrm{f}(\mathrm{n})+\frac{1}{\mathrm{n}} \mathrm{f}(\mathrm{n}+1)=1, \forall \mathrm{n} \in\{1,2,3\}$

को संतुष्ट करने वाले फलनों

$\mathrm{f}:\{1,2,3,4\} \rightarrow\{\mathrm{a} \in \mathbb{Z}|\mathrm{a}| \leq 8\}$

की संख्या है -

  • [JEE MAIN 2023]

माना $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{\mathrm{n}}+\lambda, \lambda \in \mathbb{R}, \mathrm{n} \in \mathbb{N}$ और $\mathrm{f}(4)=133, \mathrm{f}(5)=255$ है। तो $(\mathrm{f}(3)-\mathrm{f}(2))$ के सभी धनात्मक पूर्णांक भाजकों का योग है -

  • [JEE MAIN 2023]

यदि $f(x)=\frac{2^{2 x}}{2^{2 x}+2}, x \in R$, है, तो $\mathrm{f}\left(\frac{1}{2023}\right)+\mathrm{f}\left(\frac{2}{2023}\right)+\ldots \ldots .+\mathrm{f}\left(\frac{2022}{2023}\right)$ बराबर है

  • [JEE MAIN 2023]