सभी $x, y \in N$ के लिए $f(x+y)=f(x) \cdot f(y)$ को संतुष्ट करता हुआ $f$ एक ऐसा फलन है कि $f(1)=3$ एवं $\sum_{x=1}^{n} f(x)=120$ तो $n$ का मान ज्ञात कीजिए।
It is given that,
$f(x+y)=f(x) \times f(y)$ for all $x, y \in N$ .....$(1)$
$f(1)=3$
Taking $x=y=1$ in $(1)$
We obtain $f(1+1)=f(2)=f(1) f(1)=3 \times 3=9$
Similarly,
$f(1+1+1)=f(3)=f(1+2)=f(1) f(2)=3 \times 9=27$
$f(4)=f(1+4)=f(1) f(3)=3 \times 27=81$
$\therefore f(1), f(2), f(3), \ldots \ldots,$ that is $3,9,27, \ldots \ldots,$ forms a $G.P.$ with both the first term and common ratio equal to $3 .$
It is known that, $S_{n}=\frac{a\left(r^{n}-1\right)}{r-1}$
It is given that, $\sum\limits_{x = 1}^n {f\left( x \right) = 120,} $
$\therefore 120=\frac{3\left(3^{n}-1\right)}{3-1}$
$\Rightarrow 120=\frac{3}{2}\left(3^{n}-1\right)$
$\Rightarrow 3^{n}-1=80$
$\Rightarrow 3^{n}=81=3^{4}$
$\therefore n=4$
Thus, the value of $n$ is $4$
दो सम्बन्ध $R_{1}$ तथा $R_{2}$ नीचे दिए गए हैं:
$R _{1}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \in Q \right\}$ तथा $R _{2}=\left\{( a , b ) \in R ^{2}: a ^{2}+ b ^{2} \notin Q \right\}$ जहाँ सभी परिमेय संख्याओं का समुच्चय है, तो:
$x = - 3$ के लिए व्यजंक $\left| {\;\frac{{3{x^3} + 1}}{{2{x^2} + 2}}\;} \right|$ का आंकिक मान है
माना $\sum\limits_{k = 1}^{10} {f\,(a\, + \,k)} \, = \,16\,({2^{10}}\, - \,1)$ है, जहाँ सभी प्राकृत संख्याओं $x , y$
के लिए, फलन $f , f ( x + y )= f ( x ) f ( y )$ को संतुष्ट करता है तथा $f ( a )=2$ है। तो प्राकृत संख्या $^{\prime} a ^{\prime}$ बराबर है :
एक वास्तविक फलन $f(x)$, $f(x - y) = f(x)f(y) - f(a - x)f(a + y)$ फलन समीकरण को संतुष्ट करता है, यहाँ $a$ दिया गया अचर है व $f(0) = 1$, तब $f(2a - x) = $
फलन $f(x)=x+\frac{1}{8} \sin (2 \pi x), 0 \leq x \leq 1$ का आरेख नीचे दर्शाया गया है. यदि $f_1(x)=f(x)$ और $n \geq$ 1 के लिए $f_{n+1}(x)=f\left(f_n(x)\right)$.
तब निम्न कथनों:
$I$ अनंत $x \in[0,1]$ संभव है यदि $\lim _{n \rightarrow \infty} f_n(x)=0$.
$II$. अनंत $x \in[0,1]$ संभब है यदि $\lim _{n \rightarrow \infty} f_n(x)=\frac{1}{2}$.
$III$ अनंत $x \in[0,1]$ संभव है यदि $\lim _{n \rightarrow \infty} f_n(x)=1$.
$IV$. अन्त $x \in[0,1]$ सभव है यदि $\lim _{n \rightarrow \infty} f_n(x)$ का अस्तित्व नहीं है.
में से कौन से कथन सत्य है