1.Relation and Function
medium

જો $f(x) = \cos (\log x)$, તો $f(x).f(4) - \frac{1}{2}\left[ {f\left( {\frac{x}{4}} \right) + f(4x)} \right] =$

A

$1$

B

$-1$

C

$0$

D

$ \pm 1$

Solution

(c) $f(x) = \cos \,(\log x)$

Now let $y = f(x)\,\,.\,\,f(4) – \frac{1}{2}\,\left[ {f\left( {\frac{x}{4}} \right) + f(4x)} \right]$

==> $y = \cos \,(\log x).\cos \,(\log 4) $

$- \frac{1}{2}\,\left[ {\cos \,\log \,\left( {\frac{x}{4}} \right) + \cos \,(\log 4x)} \right]$

==> $y = \cos \,(\log x)\,\cos \,(\log 4)$

$ – \frac{1}{2}\,\left[ {\cos \,(\log x – \log 4) + \cos \,(\log x + \log 4)} \right]$

==> $y = \cos \,(\log x)\,\cos \,(\log 4) – \frac{1}{2}\,\left[ {2\,\cos \,(\log x)\,\cos \,(\log 4)} \right]$

==> $y = 0$.

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.