यदि $f(x) = \cos (\log x)$, तब $f(x).f(4) - \frac{1}{2}\left[ {f\left( {\frac{x}{4}} \right) + f(4x)} \right]$ का मान होगा
$1$
$-1$
$0$
$ \pm 1$
माना $f, g: N -\{1\} \rightarrow N , f(a)=\alpha$, जहाँ उन अभाज्य संख्याओं $p$, जिनके लिए $p ^\alpha$, $a$ को विभाजित करता है, की घातों में $\alpha$ अधिकतम है तथा $g(a)=a+1$, सभी $a \in N -\{1\}$ के लिए, द्वारा परिभाषित हैं। तब फलन $f+ g$
माना $S =\{1,2,3,4\}$ है। तब समुच्चय \{f: $S \times S \rightarrow S : f$ आच्छादक तथा $f ( a , b )= f ( b , a \geq a \forall( a , b ) \in S \times S \}$ में अवयवों की संख्या है
यादि $f(x) = \cos (\log x)$, तब $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $
फलन $f(x) = \;|px - q|\; + r|x|,\;x \in ( - \infty ,\;\infty )$, जहाँ $p > 0,\;q > 0,\;r > 0$ का केवल एक बिन्दु पर निम्निष्ठ मान होगा यदि
माना $c , k \in R$ है। यदि $f ( x )=( c +1) x ^2+\left(1- c ^2\right)$ $x +2 k$ तथा $f ( x + y )= f ( x )+ f ( y )- xy , \forall x$, $y \in R$ है, तो $\mid 2(f(1)+f(2)+f(3)+$ $+ f (20)) \mid$ का मान है $..........$