સાબિત કરો કે વિધેય $f: N \rightarrow N ,$ $f(1)=f(2)=1$ અને પ્રત્યેક $x>2$ માટે $f(x)=x-1$, દ્વારા વ્યાખ્યાયિત હોય તો વ્યાપ્ત છે, પરંતુ એક-એક નથી.
$f$ is not one-one, as $f(1)=f(2)=1 .$ But $f$ is onto, as given any $y \in N ,\, y \neq 1$ we can choose $x$ as $y+1$ such that $f(y+1)$ $=y+1-1=y .$ Also for $1 \in N$, we have $f(1)=1$.
જો $f(x) = sin\,x,\,\,g(x) = x.$
વિધાન $1:$ $f(x)\, \le \,g\,(x)$ દરેક $x \in (0,\infty )$
વિધાન $2:$ $f(x)\, \le \,1$ દરેક $(x)\in (0,\infty )$ પરંતુ $g(x)\,\to \infty$ જો $x\,\to \infty$ હોય તો .
જો વિધેય $f(x)$ માટે $f\left( {x + \frac{1}{x}} \right) = {x^2} + \frac{1}{{{x^2}}};$ હોય તો $(fof )$ $\sqrt {11} )$ =
ધારો કે વિધેય $f: R \rightarrow R$ માટે $f(x+y)=f(x) f(y)$ બધા $x, y \in R$ અને $f(1)=3$ થાય જો $\sum \limits_{i=1}^{n} f(i)=363,$ હોય તો $n$ ની કિમત શોધો
ધારો કે $f:[2,\;2] \to R$ ; $f(x) = \left\{ \begin{array}{l} - 1\,\,\,\,\,\,\,\,\,\,\,\,\,{\rm{for}}\; - 2 \le x \le 0\\x - 1\;\;\;\;\;{\rm{for}}\;0 \le x \le 2\end{array} \right.$, તો $\{ x \in ( - 2,\;2):x \le 0$ અને $f(|x|) = x\} = $
વિધેય $f(x) = - 1 + \frac{2}{{{2^x}^2 + 1}}$ ની મહત્તમ કિમત ........... થાય