જો $y = f(x) = \frac{{ax + b}}{{cx - a}}$, તો $x$ મેળવો
$1/f(x)$
$1/f(y)$
$yf(x)$
$f(y)$
વિધેય $f(x) = {x^{10}} + {x^2} + \frac{1}{{{x^{12}}}} + \frac{1}{{\left( {1\ +\ {{\sec }^{ - 1}}\ x} \right)}}$ ની ન્યુનતમ કિમત ........ છે.
અહી $f: R \rightarrow R$ એ મુજબ વ્યાખ્યાયિત છે $f(x)=\left\{\begin{array}{l}\frac{\sin \left(x^2\right)}{x} \text { if } x \neq 0 \\ 0 \text { if } x=0\end{array}\right\}$ હોય તો $x=0$ આગળ $f$ એ . . .
ધારો કે $f: R \rightarrow R$ એ $f(x)=\frac{2 e^{2 x}}{e^{2 x}+\varepsilon}$ મુજબ વ્યાખ્યાયિત છે. તો $f\left(\frac{1}{100}\right)+f\left(\frac{2}{100}\right)+f\left(\frac{3}{100}\right)+\ldots .+f\left(\frac{99}{100}\right)$ ની કિમંત મેળવો.
જો મહતમ પૃણાંક વિધેય હોય કે જેનો પ્રદેશ વાસ્તવિક સંખ્યા હોય તો તેનો વિસ્તાર મેળવો.
વિધેય $f\left( x \right) = \left| {\sin \,4x} \right| + \left| {\cos \,2x} \right|$ નો આવર્તમાન મેળવો.